Sigma-cotorsion Modules over Valuation Domains

نویسندگان

  • SILVANA BAZZONI
  • JAN ŠŤOVÍČEK
چکیده

We give a characterization of Σ-cotorsion modules over valuation domains in terms of descending chain conditions on certain chains of definable subgroups. We prove that pure submodules, direct products and modules elementarily equivalent to a Σ-cotorsion module are again Σ-cotorsion. Moreover, we describe the structure of Σ-cotorsion modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-theoretic aspects of Sigma-cotorsion modules

Let R be an associative ring with identity. It is shown that every Σ -cotorsion left R-module satisfies the descending chain condition on divisibility formulae. If R is countable, the descending chain condition on M implies that it must be Σ -cotorsion. It follows that, for countable R, the class of Σ -cotorsion modules is closed under elementary equivalence and pure submodules. The modules M t...

متن کامل

Infinite Dimensional Tilting Modules and Cotorsion Pairs

Classical tilting theory generalizes Morita theory of equivalence of module categories. The key property – existence of category equivalences between large full subcategories of the module categories – forces the representing tilting module to be finitely generated. However, some aspects of the classical theory can be extended to infinitely generated modules over arbitrary rings. In this paper,...

متن کامل

Whitehead Modules over Large Principal Ideal Domains

We consider the Whitehead problem for principal ideal domains of large size. It is proved, in ZFC, that some p.i.d.’s of size ≥ א2 have nonfree Whitehead modules even though they are not complete discrete valuation rings. A module M is a Whitehead module if ExtR(M,R) = 0. The second author proved that the problem of whether every Whitehead Z-module is free is independent of ZFC + GCH (cf. [5], ...

متن کامل

Relative Cotorsion Modules and Relative Flat Modules

Let R be a ring, M a right R-module, and n a fixed non-negative integer. M is called n-cotorsion if Extn+1 R N M = 0 for any flat right R-module N . M is said to be n-flat if ExtR M N = 0 for any n-cotorsion right R-module N . We prove that ( n n is a complete hereditary cotorsion theory, where n (resp. n) denotes the class of all n-flat (resp. n-cotorsion) right R-modules. Several applications...

متن کامل

On quasi-baer modules

Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008